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Normalized frequencies are computed for a rectangular, isotropic plate resting on elastic supports. The

normalized frequencies are determined using eigensensitivity analysis, which approximates the

eigenparameters in a Mauclarin series, yielding an approximate closed-form expression. One benefit of

the approximate closed-form expression is its computational efficiency and yet another is its

application of re-analysis. Accuracy of the approximate expression is assessed by comparing results

with the widely used Rayleigh–Ritz method using orthogonal polynomials and beam shape functions in

both approaches. Consideration for a variety of edge conditions is given through a combination of

simply supported, clamped and free boundary conditions. Results indicate that the accuracy of higher

frequencies computed by the sensitivity approach is highly dependent upon choice of basis function.

Published by Elsevier Ltd.
1. Background

Point supported plates are plates that have prescribed
displacements at a number of discrete locations within its
domain. Rectangular, circular as well as elliptical plates represent
geometries of interest. Rigid point supports have a prescribed
displacement of zero while elastically point supported have
displacements dependent of the stiffness at the support. Electro-
nic circuit boards, solar panels, and concrete slabs represent
applications that can be effectively modeled as point supported
plates. A brief overview of recent contributions is presented.
Altekin [1] consider both bucking and free vibration of elliptical
plates which have point supports along the symmetric diagonals.
A Ritz approach is used to solve for the fundamental frequency
and critical buckling load. Huang et al. [2] studied the free
vibration of tapered isotropic plates on rigid point supports. A
Mindlin plate theory is used and a Green’s function approach is
used to generate the governing equations. Yu [3] used the method
of superposition established by Gorman [4] to analyze the free
vibration of cantilever plates containing an attached mass. Zhou
et al. [5] utilized a three-dimensional theory to study the
frequency analysis of both isotropic and composites plates. A
finite layer formulation is used to model the structure and a
hybrid basis function is introduced to adequately satisfy the
displacement constraints at the point supports.

Sensitivity analysis seeks to assess the effect of a parameter on
the response of a system. Application of sensitivity analysis covers
Ltd.
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all fields of economics, business, science, mathematics, and
engineering. Structural eigensensitivity analysis provides a direct
method to assess the effect of system parameters on the
eigenvalues, typically the frequencies and buckling loads. An
early contributor in this area of research was Hearmon [6] who
developed a one-term formula to approximate the fundamental
frequency of orthotropic plates. Bert [7] studied the optimal
design of composite plates for maximum fundamental frequency.
Barton and Reiss [8] provided approximate closed-formed
formula for uni-axial and bi-axial buckling of symmetric compo-
site plates. Recently Barton [9][10] has applied this technique to
investigate the bucking of isotropic plates subject to combined in-
plane loading and the thermal buckling of composite plates with
clamped-free boundary conditions.

In this paper, eigensensitivity analysis is used to determine an
approximate closed-form expression which is used to compute
frequencies of a square isotropic plate resting on four elastic point
supports. A combination of boundary conditions is considered
including simply supported, clamped and free. The article is
organized into three sections beginning the problem formulation,
an overview of the eigensensivity approach, and the results and
discussion section.
2. Problem formulation

There are many ways to formulate the equations that govern
the free vibration of the elastically point supported plate
including the Newtonian mechanics and the principle of work-
izing the vibration of an elastically point supported rectangular
:10.1016/j.tws.2009.11.005
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energy. Here the principle of minimum potential energy is
preferred.

The total potential energy P for the system containing elastic
supports and discrete masses is given as

P¼U�T ð1Þ

Here U contains the strain energy of the plate and the
supporting springs given by

U ¼
D

2
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( )
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where D is the flexural stiffness, kp is the stiffness of the pth
spring, u is Poisson’s ratio and w(x,y) is the transverse displace-
ment. The kinetic energy consists of energy from the plate and
from added discrete masses. Here T is given by

Tplate ¼
rho2

2

ZZ
R
w2ðx; yÞdxdyþ

o2

2

ZZ
R

XN

q ¼ 0

mqdðx�xqÞdðy�yqÞw
2ðx; yÞdxdy

ð3Þ

Above mq is the qth discrete mass. In the paper, all stiffnesses are
taken to be equal as kp and all masses are taken to be equal as m.

The displacement w(x,y) may be expressed as

wðx; yÞ ¼
XN

i ¼ 1

XN

j ¼ 1

wijfi

x

a

� �
yj

y

b

� �
ð4Þ

where fi(x/a) and yj(y/b) are shape function in the x- and
y-directions, respectively. The shape functions are selected to
satisfy kinematic and static boundary conditions. The class of
functions can be beam shape or polynomials. In fact, Smith et al.
[11] considered the buckling of isotropic plates under shear
loading and solved the corresponding problem using the Ray-
leigh–Ritz method. These authors considered a number of
orthogonal polynomials as basis functions including Chebyshev
type-1 and type-2, Legendre, Hermite, and Laguerre.

The governing differential equation comes by extremizing
Eq. (1) with respect to the kinematic variable w(x,y). Substituting
Eq. (4) into Eq. (1) and minimizing the total potential energy with
respect to the coefficients wij, results in the eigenvalue problem ofX

m

X
n

ðKijmn�o2MijmnÞwmn ¼ 0 ð5Þ

where

Kijmn ¼
abD

a4
ðAimbjnþuR2ðCimcjnþCmicnjÞþ2ð1�uÞR2EimejnþR4BimajnÞþkGijmn

Mijmn ¼MBimbjnþmGijmn ð6Þ

and Gijmn ¼
PN

p ¼ 1 fiðxpÞyjðypÞfmðxpÞynðypÞ is the product of the
basis functions and is evaluated where the springs and masses are
located. Several parameters are used in the above definitions
including R which is the aspect ratio given as a/b and a set of
matrices called boundary condition matrices. These boundary
condition matrices are defined by

Apm ¼ ðf00p; f00mÞ aqn ¼ ðy00q; y00nÞ
Bpm ¼ ðfp; f00mÞ bqn ¼ ðyq; ynÞ

Cpm ¼ ðf00p; fmÞ cqn ¼ ðy00q; ynÞ

Epm ¼ ðf0p; f0mÞ epm ¼ ðy0p; y0mÞ

ð7Þ

where the prime represents the spatial derivative and ( � , � ) is
used to represent the L2 inner product on [0,1]. The above
Please cite this article as: Joseph Watkins R, Barton O Jr.. Character
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equations for Kijmn and Mijmn are the quite general. They are
independent of any particular set of basis functions. Therefore
they can be used if fp and yq are kinematically admissible
polynomials, beam shape functions, or any other set of kinema-
tically admissible functions.
3. Sensitivity analysis

A complete presentation of the sensitivity approach used in
this paper can be referenced in Barton and Reiss [8]. Eq. (5),
written as

½K�faijg ¼ lij½M�faijg ð8Þ

provides the basis to apply the sensitivity approach. Here we
define {aij} as the (i,j)th component of the eigenvector and lij is its
corresponding eigenvalue. An approximate expression for the
eigenvalue lij can be determined by introducing parameters S1

and S2 into Eq. (8) and considering

½K̂ðS1Þ�fâijðS1; S2Þg ¼ l̂ijðS1; S2Þ½M̂ðS2Þ�fâijðS1; S2Þg ð9Þ

where

½K̂ðS1Þ� ¼ ½KD�þS1½DK�

½M̂ðS2Þ� ¼ ½MD�þS2½DM�

"

Here [KD] and [MD] are a diagonal matrices obtained from [K] and
[M] by deleting all off-diagonal elements; [DK] and [DM] are
matrices which have zeros on the diagonal and contain only the
off-diagonal elements of [K] and [M], respectively. The parameters
S1 and S2 take on values of either 0 or 1. If both S1 and S2=0, the
solution to Eq. (9) becomes the ratio of the diagonal elements of
the stiffness matrix [KD] and matrix [MD]. If both S1 and S2=1, then
the original eigenvalue problem, Eq. (9) is recovered. The desired
eigenvalue lmn is obtained by expanding l̂mn in a Maclaurin series
about (S1,S2)=(0,0) and evaluating at (S1,S2)=(1,1). Thus

lij ¼ l̂ijð1;1Þffi l̂ijð0;0Þþdl̂ijð0;0Þþ
1

2
d2l̂ijð0;0Þ ð10Þ

The expressions appearing on the right-hand side of Eq. (10) were
presented in [8] and are

l̂ijð0; 0Þ ¼
Kijij

Mijij

dl̂ijð0; 0Þ ¼ 0

d2l̂ijð0; 0Þ ¼�
2

Mijij
2

X
ka i

X
la j

KijijDMklij�MijijDKklij

� �2
KklklMijij�KijijMklkl

( ) ð11Þ

Substituting Eq. (11) into Eq. (10) provides the desired
quadratic approximate closed-form expression of

lij ¼
Kijij

Mijij
�

1

Mijij
2

X
ka i

X
la j

KijijDMklij�MijijDKklij

� �2
KklklqMijij�KijijnMklkl

( )
ð12Þ

4. Discussion

In this section, the general form of the approximate closed-
form expression, Eq. (11), is presented for combinations of simply
supported, clamped or free boundary conditions and for two types
of basis function. Boundary conditions specific results are then
evaluated based upon chosen basis functions.

Eq. (12) is specialized for a plate consisting of four springs of
equal stiffness and up to four equal masses can be determined by
first evaluating the stiffness and mass matrix elements given
through Eq. (6) and then substituting these results into Eq. (12).
Evaluating Eq. (6) requires determining the diagonal matrices for
izing the vibration of an elastically point supported rectangular
:10.1016/j.tws.2009.11.005
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both [K] and [M] which are

Kijij ¼ ðAiibjjþ2uR2Ciicjjþ2ð1�uÞR2EiiejjþR4Biiajjþ
kpa2R

D
Gijij

Mijij ¼ Biibjjþ
m

M
Gijij ð13Þ

and computing the off-diagonal matrices for both [K] and [M] are

DKijkl ¼ uR2ðCikcjlþCkicljÞþ2ð1�uÞR2Eikejlþ
kpa2R

D
Gijkl

DMijkl ¼
m

M
Gijkl ð14Þ

Substituting both Eqs. (13) and (14) into the general expres-
sion given in Eq. (12) yields
o2
ija

4rh

D
¼ Aiibjjþ2uR2Ciicjjþ2ð1�uÞR2EiiejjþR4Biiajjþ

kpa2

D
Gijij

� �
� Biibjjþ

m

M
Gijij

h i�1

�
1

Biibjjþ
m

M
Gijij

� �2
�
X1
ka i

X1
la j

((
Aiibjjþ2uR2Ciicjjþ2ð1�uÞR2EiiejjþR4Biiajjþ

kpa2

D
Gijij

� �2

�
m

M
Gklij

h i2

�2� Aiibjjþ2uR2Ciicjjþ2ð1�uÞR2EiiejjþR4Biiajjþ
kpa2

D
Gijij

� �

�
m

M
Gklijn

h i
� Biibjjþ

m

M
Gijij

h i
� uR2ðCikcjlþCkicljÞþ2ð1�uÞR2Eikejlþ

kpa2

D
GðjÞklij

� �
� Biibjjþ

m

M
Gijij

h i2

� uR2ðCikcjlþCkicljÞþ2ð1�uÞR2Eikejlþ
kpa2

D
Gklij

� �2
)

�

(
Akkbllþ2uR2Ckkcllþ2ð1�uÞR2EkkellþR4Bkkallþ

kpa2

D
Gklkl

� �

� Biibjjþ
m

M
Gijij

h i
� Aiibjjþ2uR2Ciicjjþ2ð1�uÞR2EiiejjþR4Biiajjþ

kpa2

D
Gijij

� �
� Bkkbllþ

m

M
Gklkl

h i	�1
)

ð15Þ
Eq. (15) is valid for any combination of simply supported,
clamped or free boundaries. The formula requires identifying an
admissible basis and evaluating the boundary matrices given in
Eq. (7). Selecting orthogonal polynomials as the basis requires
numerical evaluation of the boundary matrices and, as a result, no
simplification occurs in the form of Eq. (15). If free boundary
conditions are excluded, then the following results holds
Epm=�Cpm and epm=�cpm. Eq. (15) then becomes
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M
Gklkl

h io�1
	

ð16Þ

Simplification to Eq. (16) for the case of no added discrete masses
occurs by setting m=0 resulting in
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D
¼ Aiibjjþ2R2CiicjjþR4Biiajjþ

kpa2

D
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and if both added discrete mass, m=0, and elastic support
stiffness, kp=0, Eq. (17) reduces to

o2
ija

4rh

D
¼ Aiibjjþ2R2CiicjjþR4Biiajj

� �
� ½Biibjj�

�1

�
X1
ka i

X1
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f½2R2Ckicjli�
2g � f½Akkbllþ2R2CkkcllþR4Bkkall�

�½Biibjj��½Aiibjjþ2R2CiicjjþR4Biiajj� � ½Bkkbll�g
�1g ð18Þ

Specific results can now be evaluated for a variety of support
conditions including simply support on all sides, simply sup-
ported on opposite sides, and clamped on all sides.
5. Simply supported plates (S–S–S–S)

The first plate to be considered is one containing any number
of discrete masses and equal elastic supports such that the ith
spring coordinates lie within 0oxioa and 0oyiob. For a plate
simply supported on all sides, the boundary condition in the x and
y-direction is given by

w¼ 0 Mxx ¼ 0 x¼ 0; a

w¼ 0 Myy ¼ 0 y¼ 0; b

Selecting orthonormal polynomials [11] as the basis functions
requires numerically evaluating the boundary matrices. These
results are recalled when needed to evaluate Eq. (16). The
izing the vibration of an elastically point supported rectangular
:10.1016/j.tws.2009.11.005
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Gramm-Schmidt process is used to construct an ortho-normal set
after assuming the initial element to be

f0ðxÞ ¼ x�2x3þx4 y0ðyÞ ¼ y�2y3þy4

Choosing beam shape functions allows for an analytical evalua-
tion of the boundary matrices which can be directly substituted
into Eq. (16). To this end, select the basis function as

fm

x

a

� �
¼

ffiffiffi
2
p

Sin
mpx

a

� �
yn

y

b

� �
¼

ffiffiffi
2
p

Sin
npy

b

� �
ð19Þ

Evaluating the boundary matrices given by Eq. (7) provides

Aim ¼ i4p4dim ajn ¼ j4p4djn

Bim ¼ dim bjn ¼ djn

Cim ¼�i2p2dim cjn ¼�i2p2dim

ð20Þ

and substituting these into Eq. (16) yields the desired approx-
imate closed-form expression for simply supported boundary
conditions on all sides.
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A simplification to Eq. (21) for the case of no added discrete
masses produces

o2
ija

4rh

D
¼ p4 i4þ2R2i2j2þR4j4þ

kpa2

D
Gmnmn

� �

�4p4 �
X1
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2
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ð22Þ

and if both added discrete mass m=0 and elastic support stiffness
kp=0, Eq. (22) reduces to the well known equation for the
frequency of a simply supported, isotropic plate.

o2
ija

4rh

D
¼ p4 i4þ2R2i2j2þR4j4

� �

6. Opposite edges simply supported

In a similar manner, an expression for a plate with two
opposite edges simply supported in the x-direction and clamped
in the y-direction requires identifying the following beam shape
functions
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x
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2
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and

CosðlnÞCoshðlnÞ ¼ 1

sn ¼
CoshðlnÞ�CosðlnÞ

SinhðlnÞ�SinðlnÞ

then the boundary matrices, Eq. (7) become

Aim ¼ i4p4dim ajn ¼ l4
j djn

Bim ¼ dim bjn ¼ djn

Cim ¼�i2p2dim cjn ¼ cjn

and Eq. (16) becomes
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Plates which are simply supported in the x-direction and free in y-
directions have boundary conditions given by

w¼ 0 Mxx ¼ 0 x¼ 0; a

@2w

@y2
þu

@2w

@x2

@3w

@y3
þð2�uÞ

@3w

@x2@y
y¼ 0; b

and following beam shape functions of

fm

x

a

� �
¼

ffiffiffi
2
p

Sin
mpx

a

� �

yn
y

b

� �
¼ Cosh

lny

b

� �
þCos

lny

b

� �
�sn Sinh

lny

b

� �
þSin

lny

b

� �� �

are used to satisfy them. As in the case of a plate with clamped
conditions along the y-direction, the coefficients defined above
hold for this case of free boundary in along the y-direction. The
boundary matrices give through Eq. (8) become

Aim ¼ i4p4dim ajn ¼ l4
j djn

Bim ¼ dim bjn ¼ djn

Cim ¼�i2p2dim cjn ¼ ðy00j; ynÞ

Eim ¼ imp2dim ejn ¼ ðy0j; y0nÞ

As before substituting the boundary matrices into Eq. (16)
provides

o2
ija

4rh

D
¼ i4p4�2uR2i2p2ðejjþcjjÞþ2R2i2p2ejjþR4l4

j þ
kpa2

D
Gijij

� �
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Table 1
Coordinates for spring placement (inches).

Spring Configuration A Configuration B Configuration C

X Y X Y X Y

1 7.5 7.5 15 5 15 15

2 22.5 7.5 25 15 15 15

3 22.5 22.5 15 25 15 15
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ð25Þ

For all other combination of boundary conditions, clamped in the
x-direction and free in y-direction for instance, Eq. (16) will be
used since no simplification occurs after evaluating it with the
boundary matrices.
4 7.5 22.5 5 15 15 15

Table 2
Convergence results for Ritz and closed-form expression using orthogonal

polynomials.

SSSS CCCC SCSC SFSF CFCF

N Ritz Quad Ritz Quad Ritz Quad Ritz Quad Ritz Quad

1 3.149 3.149 5.730 5.730 4.609 4.609 – – – –

3 3.148 3.148 5.728 5.728 4.608 4.608 2.565 2.565 4.214 4.214

5 3.147 3.147 5.727 5.727 4.608 4.608 2.564 2.564 4.213 4.213

7 3.147 3.147 5.727 5.727 4.608 4.608 2.550 2.553 4.194 4.196

9 3.147 3.147 5.727 5.727 4.608 4.608 2.550 2.543 4.190 4.176

11 3.147 3.147 5.727 5.727 4.608 4.608 2.550 2.535 4.188 4.189

Table 3
Convergence results for Ritz and closed-form expression using beam shape

functions.

SSSS CCCC SCSC SFSF CFCF

N Ritz Quad Ritz Quad Ritz Quad Ritz Quad Ritz Quad

1 3.158 3.158 5.752 5.752 4.624 4.624 2.858 2.858 4.382 4.382

3 3.158 3.158 5.736 5.735 4.617 4.617 2.779 2.773 4.323 4.318

5 3.158 3.158 5.733 5.732 4.617 4.617 2.754 2.757 4.305 4.306

7 3.158 3.158 5.733 5.732 4.616 4.616 2.742 2.752 4.297 4.303

9 3.158 3.158 5.732 5.732 4.616 4.616 2.735 2.750 4.292 4.301

11 3.158 3.158 5.732 5.731 4.616 4.616 2.729 2.749 4.288 4.300
7. Results

In this section, numerical results are presented for the derived
approximate closed-form results and compared to results generated
using the Rayleigh–Ritz method for the elastically supported plate.
Under consideration is a square plate 30 in�30 in�0.5 in with
Young’s modulus E and Poisson’s ratio u of 10�106 psi and 0.315,
respectively. Each of the fours springs has the same stiffness of
130 lb/in. Choice of spring placement and configuration is infinite.
Three possible plate configurations are shown in Fig. 1 with
corresponding spring coordinates given in Table 1. Configuration A
has springs placed along the main dialogues, B has springs centered
on each edge and C has springs lumped at the center of the plate.
Tabulated results are presented for configuration A.

Accuracy of the approximate formula is compared with the
Ritz method. Frequencies are first computed using orthogonal
polynomials as basis function and then compared to results using
beam shape functions. For convenience, introduce the normalized
frequency parameter

ki ¼
oia

2

2p

ffiffiffiffiffiffi
rh

D

r

which identifies the ith normalized Ritz frequency and k̂ij is used
to identify (i,j)th normalized frequency computed using the
quadratic approximate expression.

Table 2 presents convergence results for k1 and k̂11 for all
boundary conditions using orthogonal polynomials as basis
functions and Table 3 presents the same data using beam shape
Fig. 1. Spring

Please cite this article as: Joseph Watkins R, Barton O Jr.. Character
plate using eigensensitivity analysis. Thin Walled Struct (2010), doi
functions instead as the basis functions. Eq. (16) was used to
generate the approximate closed-form results. Configuration A
without any added discrete masses was used to generate results
in all the tables. In general the closed-form expression accurately
predicts the fundamental frequency for all boundary conditions
using either type of basis function. The largest percent difference
in the two results occurs for the SFSF boundary condition.
Although negligible, these are 0.5% and 0.73% using the
orthogonal polynomials and beam shape functions, respectively.

Tables 4–8 present the first five frequencies computed by both
methods. Again both orthogonal polynomials and beam shape
locations.

izing the vibration of an elastically point supported rectangular
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Table 4
Comparison of normalized Ritz frequencies with closed-formed approximate

frequencies for SSSS boundary condition (Hertz).

j
kj k̂1j k̂2j k̂3j

Poly Beam Poly Beam Poly Beam Poly Beam

1 3.147 3.158 3.147 3.158 7.254 7.867 9.423 15.71

2 7.854 7.867 7.254 7.867 11.80 12.58 15.68 20.42

3 7.859 7.867 9.424 15.71 15.68 20.42 21.54 28.27

4 12.56 12.58 – 26.70 8.622 31.42 20.66 39.27

5 15.71 15.71 – 40.84 – 45.55 – 53.41

Table 5
Comparison of normalized Ritz frequency with quadratic approximate equation

for CCCC boundary condition, N=11, k=1612.5.

j
kj k̂1j k̂2j k̂3j

Poly Beam Poly Beam Poly Beam Poly Beam

1 5.727 5.732 5.727 5.731 11.67 11.85 20.89 20.99

2 11.68 11.85 11.67 11.85 17.22 17.58 26.21 26.43

3 11.68 11.85 20.89 20.99 26.21 26.43 34.97 34.94

4 17.22 17.58 32.92 33.52 38.23 38.80 46.95 47.05

5 21.94 20.94 46.83 49.20 53.30 54.41 61.22 62.50

Table 6
Comparison of normalized Ritz frequency with quadratic approximate equation

for SCSC boundary condition.

j kj k̂1j k̂2j k̂3j

Poly Beam Poly Beam Poly Beam Poly Beam

1 4.608 4.616 4.608 4.616 8.168 8.724 10.20 16.28

2 8.713 8.722 11.03 11.213 14.74 15.26 18.35 22.52

3 11.03 11.21 20.43 20.55 24.39 24.63 29.09 31.77

4 15.05 15.26 32.57 33.17 36.80 37.32 42.38 44.47

5 16.26 16.27 46.53 48.91 51.11 53.14 57.48 60.33

Table 7
Comparison of normalized Ritz frequency with quadratic approximate equation

for SFSF boundary condition using beam shape functions.

j kj k̂1j k̂2j k̂3j

1 2.729 2.749 7.363 15.17

2 7.352 7.204 11.48 18.98

3 7.545 10.25 13.80 20.67

4 12.06 17.61 20.32 25.65

5 14.27 22.20 24.61 29.63

Table 8
Comparison of normalized Ritz frequency with quadratic approximate equation

for CFCF boundary condition using beam shape functions.

j kj k̂1j k̂2j k̂3j

1 4.29 4.30 10.81 20.09

2 8.41 8.06 14.21 23.30

3 10.80 10.87 16.16 24.70

4 14.76 17.94 21.92 28.88

5 14.84 22.46 25.97 32.53
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functions are used as basis functions. All results are generated for
configuration A. The number of terms taken in the displacement
expansion corresponds to N=11. Frequencies from the Ritz
analysis are ordered beginning with the fundamental frequency,
the lowest numerical result. In order to compare frequencies
Please cite this article as: Joseph Watkins R, Barton O Jr.. Character
plate using eigensensitivity analysis. Thin Walled Struct (2010), doi
computed using the closed-form expression, several modes
corresponding combinations of indices i and j must be
computed. For the most part, k1 ¼ k̂11, k2 ¼ k̂12, k3 ¼ k̂21, k4 ¼ k̂22,
and k5 ¼ k̂31.

Table 4 provides normalized frequencies for the simply
supported plate. The first column report frequencies computed
using the Ritz approach using both types of basis functions while
columns two through four report frequencies using the closed-
form expressions given in Eq. (16), for orthogonal polynomials
and Eq. (21) for beam shape functions. Some frequencies
computed using the closed-form equation with orthogonal
polynomials, such as k̂14, are not real. This is due to two factors.
First d2l14, which contains products of the off-diagonal elements
of [K], are not small and are greater than the zeroth-order term.
Secondly, the boundary matrix ðf001; f004Þ, which contributes to
the off-diagonal components of K, is not small. When beam shape
functions are used necessarily ðf00 i; f00jÞ ¼ m4

i dij where mi is the
beam’s ith natural frequency. For this boundary condition, the
approximate closed-form expression Eq. (21) which uses beam
shape functions compute more accurately frequencies when
compared with the Ritz approach using beam shape functions
than does the closed-form expression Eq. (16) which uses
orthogonal polynomials. The difference in results is more
exaggerated when considering higher modes. From Table 4 using
orthogonal polynomials, the fourth Ritz mode, k4, is 12.56 Hz and
the fourth mode k̂22 predicted by Eq. (18) is 11.80 Hz resulting in
a 6.1% difference. Comparing the same cases using beam shape
functions shows no difference.

Table 5 presents results for a plate fully clamped on all sides.
Eq. (16) was used to generate results for both types of basis
functions. As before, the closed-form expression better predicts
the Ritz frequencies using beam shape function than when using
orthogonal polynomials. A percent difference of 4.7% occurs in the
comparison of the fifth frequency using polynomials and only
0.24% occurs when using beam shape functions. Table 6 shows the
first of three results for mixed boundary conditions, simply
supported in the x-direction and clamped in the y-direction. Eq.
(23) is used to generate all numerical results. The largest percent
difference occurs again when using the polynomials as basis. Here
a 12.9% difference occurs in the computation of the fifth
frequency. Percent differences of 6.3% and 2.1%, respectively
occur in the second and fourth frequencies. The maximum
percent difference of 0.06% occurs in the fifth frequency using
beam shape functions.

Tables 7 and 8 show results for the remaining two mixed
boundary condition cases which includes a free edge in the y-
direction. Previous results indicate that beam shape functions are
better suited for the closed-form expression, especially when
considering higher frequencies. Therefore only beam shape function
results are shown. For the SFSF boundary condition, Table 7, k1 is
approximated by k̂11 and differs by 0.73%, k2 is approximate by k̂12

and differs by 2.01%, k3 is approximated by k̂21 differing by 2.4%, k4 is
approximated by k̂22 differing by 4.8%, and k5 is approximated by k̂23

and differs by 3.3%. For the SFSF boundary condition, Table 7, k1 is
approximated by k̂11 and differs by 0.23%, k2 is approximate by k̂12

and differs by 4.2%, k3 is approximated by k̂21 differing by 0.09%, k4 is
approximated by k̂22 differing by 3.7%, and k5 is approximated by k̂23

and differs by 8.9%.
8. Conclusion

In this paper approximate closed-form formulas were devel-
oped to determine the vibration of elastically supported plates. A
combination of edge support conditions were investigated
indcluding simply supported, clamped and free. Both orthogonal
izing the vibration of an elastically point supported rectangular
:10.1016/j.tws.2009.11.005
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polynomials and beam shape functions were used as admissible
basis functions. When compared to Rayleigh–Ritz results, the
computed fundamental frequency, for all boundary conditions,
using the approximate closed-form expressions are excellent. The
accuracy of higher frequencies, computed using the approximated
closed-form expression is dependent upon boundary condition
and choice of basis functions. A maximum percent difference of
0.06% occurs using beam shape functions while 12.9% occurs
using the orthogonal polynomials for the SCSC boundary condi-
tion. For other mixed boundary conditions, which includes a free
edge, percent differences in the fifth mode of 4.8% and 8.9% occurs
for the SFSF and CFCF boundary conditions, respectively.

References

1 Altekin M. Free vibration and buckling of super-elliptial plates resting on
symmetrically distributed point-supported plates. Thin-Walled Structures
2008;46:1066–86.

2 Huang M, Ma X, Sakiyama T, Matsuda H, Morita C. Free vibration analysis of
rectangular plates with variable thickness and point supports. Journal of Sound
and Vibration 2007;300:435–52.
Please cite this article as: Joseph Watkins R, Barton O Jr.. Character
plate using eigensensitivity analysis. Thin Walled Struct (2010), doi
3 Yu S. Free and forced vibration analysis of cantilver plates with attached point
mass. Journal of Sound and Vibration 2009;321:270–85.

4 Gorman D. Free vibration analysis of cantilever plates by the method of
superposition. Journal of Sound and Vibration 1976;49:237–63.

5 Zhou D, Cheung Y, Kong J. Free vibration of thick, layered rectangular plates
woth point supports by finite layer method. International Journal of Solids and
Structures 2000;37:1483–99.

6 Hearmon RFS. The frequency of flexural vibrations of rectangular orthotropic
plates with clamped and supported edges. Journal of Applied Mechanics
1959;26:537–40.

7 Bert CW. Optimal design of a composite material plate to maximize its
fundamental frequency. Journal of Sound and Vibration 1977;50:229–37.

8 Barton Jr. O, Reiss R. Buckling of rectangular symmetric angle-ply laminated
plates determined by eigensensitivity analysis. AIAA Journal 1995;33(2):
2406–13.

9 Barton Jr O. Buckling of simply supported rectangular plates under combined
bending and compression using eigensensitvity analysis. Journal of Thin Wall
Structures 2008;46(6):435–41.

10 Barton Jr. O. Approximate method for buckling of symmetric composite
laminates under thermal loading. Journal of Thermal Plastic Composite
Materials 2009;22:305–20.

11 Smith ST, Bradford MA, Oehlers DJ. Numerical convergence of simple and
orthogonal polynomials for the unilateral plate buckling problem using the
Rayleigh–Ritz Method. International Journal of Numerical Methods in
Engineering 1999;44:1685–707.
izing the vibration of an elastically point supported rectangular
:10.1016/j.tws.2009.11.005

dx.doi.org/10.1016/j.tws.2009.11.005

	Characterizing the vibration of an elastically point supported rectangular plate using eigensensitivity analysis
	Background
	Problem formulation

	Characterizing the vibration of an elastically point supported rectangular plate using eigensensitivity analysis
	Sensitivity analysis
	Discussion
	Simply supported plates (S-S-S-S)
	Opposite edges simply supported
	Results
	Conclusion
	References




